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1 Examples of and Oracle Inequality for Non-Parametric
Least Squares Regression

1.1 Recap: localized Gaussian complexity bound for non-parametric
least squares

We are studying non-parametric regression. Our model is that we observe x; € 2 and
yi € R, where
yi = [ (z) + 0wy, i € [n]

and f* € FC{f:Z — R} is in a designated function class. The noise is w; s N(0,1).
We consider the non-parametric least squares problem, which has the constrained form

n

f € argmin % Z@Z — f(x:))?

fer o

Our goal is to bound the prediction error

n

1F = Pl = = S (Flas) — 17 (@a)?.

n -
=1

Last time, we proved the following localized Gaussian complexity bound.
Theorem 1.1. Suppose that Fx = F — {f*} is star shaped. Then
Eu,[lfa = F*112] S 67,

where 52 solves G, (6; F*) = 6%/(20), which is

. 1
Gn(6: ) :=E | sup ~ Y wig(wi)

g .

ligln<s ' =1
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The chaining method gives us a bound

Gn(0; F*) < +/ Vog N, (t; B, (6; F*)) dt.
Let’s look at some concrete examples for this localized Gaussian complexity bound.

1.2 Applications of the localized Gaussian complexity bound
Example 1.1. Let Fi., = {fo(-) = (-,0) : § € R}, and let
yi = (24,0%) + 0 - w;, i € [n],

where 0* € R%. Our estimator is

n

- 1
0= in — P i79 27
min 'E_l(y (zi,0))

SO
n

J3 = argmin 1 Z(yz — fo(z:))?.

n
f@ej:l:n i=1

We will show that

1 n *
1f5 = for I = — D _{wi 0= 07)2

We have the upper bound proportional to ﬁ féia Vog Ny, (t; B, (6; F*)) dt, so we just
46

need to calculate this covering number. This ball is

B (05 Fin) = || fo(z) = (z,0) :

which is isomorphic to the d-ball in the range of X (where dim range(X) = rank(X). Using
a volume argument, the covering number is

Nn(t;Bn(é;]:l:n)) <r- 10g <1 + 2755) , r= rank(X).
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So the metric entropy integral is upper bounded by

\\/[;/(jwlog<l—|—2;5>dt§c-5ﬁn.

We have ¢ f 40, so solving gives 0, = ca\f So §2 = caf and we get

Eulllf; — for 2] 50\/§

Example 1.2 (Lipschitz function class). Let Frip(L) = {f : [0,1] = R: f(0) =0, fis L —
Lipschitz}. Then
F* C Frip(L) = Frip(L) = Frip(2L).

We have upper bounded the metric entropy of this function class as

L
log N(g; F(2L), || - [lo) S =

~

where || f]loo = supgeas 50 | flln = (2 30, f(2:)%)Y2 < || f|loo- This tells us that
L
log N(; F(2L), || - [n) < log N(e; F(2L), || - o) S —-

So the metric entropy integral is

1 )
o= [ VIR N EFCEDT ) dr < —= / Ly
15

t
o)

- C\/E(\f— 62/ (40))

2yl £\/5
n
Solving \/ = 62 gives 62 < ( )2/3

Example 1.3. What if log N =< Eid for d > 3 (Lipschitz in d dimensions)? Then

L N A et

Vo . t4/2  /nd—2td/2-1]:
12 1
e
_\/ﬁd—Qsdﬂ—l

12 1
Take € = 4 ° and compare —— 375 7

2
=ctoget e < . This gives 6 < —/



1.3 Oracle inequalities

In practice, we may encounter the situation f* ¢ F, like if we fit a linear model to something
which is not exactly linear.

B — CF&L (True doto vvoie,l)
Estimetion envon

approx ervor ((,m ovoidab le,)

% ( Besx upproximeTion )

F ( Estmator funcrion class

Suppose f € F is closest to f*. We hope that .]?iS close to J?when we have a lot of samples.
That is, we hope that

A_ * <.f —fF 7"y
1/ f\lm}gfllf fli+e

where ¢, — 0 as n — oo. We would also like &, to decay as fast as possible. This
kind of bound gives us a justification that our nonparametric regression gives us a best
approximation to the function f*.

Define O0OF = F—F ={f—g: f,g € F}. Assume that 0F is star-shaped; we can
always take the star hull to make this true, so this is not a stringent assumption.

Theorem 1.2. Let 6, = inf{0 > 0: G,(0;90F) < %} Then there exist constants cg, c1, Ca
such that the event

1+ gamma

Fo 2 < inf — R 25| vfer
ntdn,
occurs with probability at least 1 — cie” -2 .

This says that N
I = fI% S L [1f = fII5 + a7,
fer
so we can integrate this probability bound to get an expectation bound:
2

EA_*2<'f |2 52 i
If = £l s L I = S+ 00+

Note that if f* € F, then the first term is 0, so this recovers the prediction error bound in
the previous theorem.



Proof. We start from a basic inequality:

1 n N n
i=1 i=1
This tells us that

Lic e o Lis g I 2 o =
QW—inSQM—fH%+n;;muwn—ﬂm».

(%)
We want to upper bound the right term; this is basically the same thing we did for the
previous prediction error bound, but with f instead of f*. Recall that by definition,
Fu(6;0F) =E[sup geor |2 30 wig(x;)|] and G, (6.0F) =< 62
llgllnlI<s
The simple case is when ||f — f|, < 0. In this case,

() < Gn(8,; OF) < 62.

The harder case is when ||J?— flln > 6,. In this case, our goal is to show that (x) <

Sullf = Fln- - b

1 ¢ N ry On ||f_ f||n
() = |= > wi (fla) = fla)—=——= 5
gt 1f = flln n
=:g(xs)
Since OF is star-shaped, we have g € 0F. Also observe that ||g||, < dy.
1 = ||f_ f”n
< sup |— wig(z;)| ———
geoF | ; g( ) 671
llglln<é

If we have an argument to show that this quantity concentrates around its mean, we get

1 = Flln

S Gn(0p; OF) 5

Using this line of argument, we can show that

1 = £l < IF = £l + 2max{8}, a1 = flln}

The way to deal with the last term is to use the inequality
-~ —~ ~ 1 - ~
Onllf = flln < 0n(lf = Flln+ I1f = ) < 553 +e(lf = ol + 1f = £ lln)?

1 N * rs *
0+ 26 f = frIl5 + 220 = £

IN

Here, we are using the Fenchel-Young inequality, ab = (a//€)(by/€) < (%)2 +(Veb)2. O
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1.4 Applications of the oracle inequality

Example 1.4. Suppose {¢,,}2°_; is an orthogonal basis of L*(P), and let Forino(1,T) :=

(f =0 Bntm : S0 B2 < 1. If f* = 30 0% ¢y, then f* ¢ Forpno. Using this
oracle inequality, we can get

N * . * T
IF=f 7S > 05) + 0%~

mn
m>T

The intuition is that if we have n samples, we can choose T = en so that the right term is
small. Then the error is roughly the contribution of the first term.

Example 1.5. Let y; = (x;,0.) +¢;, and let fg- = (-, 0,). Then consider the function class
Feparse(8) = {fo = (-,0) : 0 € R%||0]|op < s}. Our estimator is then

§ = arg min [ly — X0|[3.
lollo<s

This is the fp-variant of LASSO, which is not efficiently computable. Even if the model is
not s-sparse, we get

0 p*)|(2
IX@-03
n 16llo<s n n

X661} , &

n

Here, we know that
52 < UQSIOg(ed/S)
n ~ *
n
In section 13.4.1 of Wainwright’s book, there is a discussion of oracle inequalities for
regularized estimators.
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