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1 Examples of and Oracle Inequality for Non-Parametric
Least Squares Regression

1.1 Recap: localized Gaussian complexity bound for non-parametric
least squares

We are studying non-parametric regression. Our model is that we observe xi ∈ X and
yi ∈ R, where

yi = f∗(zi) + σ · wi, i ∈ [n]

and f∗ ∈ F ⊆ {f : X → R} is in a designated function class. The noise is wi
iid∼ N(0, 1).

We consider the non-parametric least squares problem, which has the constrained form

f̂ ∈ arg min
f∈F

1

n

n∑
i=1

(yi − f(xi))
2

Our goal is to bound the prediction error

‖f̂ − f∗‖L2(Pn) =
1

n

n∑
i=1

(f̂(xi)− f∗(xi))2.

Last time, we proved the following localized Gaussian complexity bound.

Theorem 1.1. Suppose that F∗ = F − {f∗} is star shaped. Then

Ewi [‖f̂n − f∗‖2n] . δ2n,

where δ2n solves Gn(δ;F∗) = δ2/(2σ), which is

Gn(δ;F∗) := E

 sup
g∈F∗

‖g‖n≤δ

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
 .
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The chaining method gives us a bound

Gn(δ;F∗) . δ2

4σ
+

16√
n

∫ δ

δ2

4δ

√
logNn(t;Bn(δ;F∗)) dt.

Let’s look at some concrete examples for this localized Gaussian complexity bound.

1.2 Applications of the localized Gaussian complexity bound

Example 1.1. Let F1:n = {fθ(·) = 〈·, θ〉 : θ ∈ Rd}, and let

yi = 〈xi, θ∗〉+ σ · wi, i ∈ [n],

where θ∗ ∈ Rd. Our estimator is

θ̂ = min
θ∈Rd

1

n

n∑
i=1

(yi − 〈xi, θ〉)2,

so

f
θ̂

= arg min
fθ∈F1:n

1

n

n∑
i=1

(yi − fθ(xi))2.

We will show that

‖f
θ̂
− fθ∗‖2n =

1

n

n∑
i=1

〈xi, θ̂ − θ∗〉2

=
‖X(θ∗ − θ̂)‖22

n

. σ2 · rank(X)

n

. σ2
d

n
.

We have the upper bound proportional to 1√
n

∫ δ
δ2

4δ

√
logNn(t;Bn(δ;F∗)) dt, so we just

need to calculate this covering number. This ball is

Bn(δ;F1:n) =

∥∥∥∥∥∥fθ(x) = 〈x, θ〉 :

√√√√ 1

n

n∑
i=1

〈xi, θ〉2 ≤ δ

∥∥∥∥∥∥ ,
which is isomorphic to the δ-ball in the range of X (where dim range(X) = rank(X). Using
a volume argument, the covering number is

Nn(t;Bn(δ;F1:n)) ≤ r · log

(
1 +

2δ

t

)
, r = rank(X).

2



So the metric entropy integral is upper bounded by

√
r√
n

∫ δ

δ2

4δ

√
log

(
1 +

2δ

t

)
dt ≤ c · δ

√
rn.

We have cδ
√

r
n = δ2

4σ , so solving gives δn = cσ
√

r
n . So δ2n = cσ

√
r
n , and we get

Ew[‖f
θ̂
− fθ∗‖2n] . σ

√
r

n
.

Example 1.2 (Lipschitz function class). Let FLip(L) = {f : [0, 1]→ R : f(0) = 0, f is L−
Lipschitz}. Then

F∗ ⊆ FLip(L)−FLip(L) = FLip(2L).

We have upper bounded the metric entropy of this function class as

logN(ε;F(2L), ‖ · ‖∞) .
L

ε
,

where ‖f‖∞ = supx∈X , so ‖f‖n = ( 1
n

∑n
i=1 f(xi)

2)1/2 ≤ ‖f‖∞. This tells us that

logN(ε;F(2L), ‖ · ‖n) ≤ logN(ε;F(2L), ‖ · ‖∞) .
L

ε
.

So the metric entropy integral is

1√
n

∫ δ

δ2

4δ

√
logNn(t;F(2L), ‖ · ‖∞) dt ≤ 1√

n

∫ δ

δ2

4σ

√
L

t
dt

=

√
L

n

(
2
√
t

∣∣∣∣δ
δ2

4σ

)

= c

√
L

n
(
√
δ −

√
δ2/(4σ))

≤ c
√
L

n

√
δ.

Solving
√

Lδ
n = δ2 gives δ2 . (Lσ

2

n )2/3.

Example 1.3. What if logN � 1
εd

for d ≥ 3 (Lipschitz in d dimensions)? Then

1√
n

∫ δ

ε

1

td/2
dt =

1√
n

2

d− 2

−1

td/2−1

∣∣∣δ
ε

≤ 1√
n

2

d− 2

1

εd/2−1
.

Take ε = δ2

4σ and compare 1√
n

2
d−2

1
εd/2−1 = ε to get ε . 1

n4/d . This gives δ2 . 1
n4/d .
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1.3 Oracle inequalities

In practice, we may encounter the situation f∗ /∈ F , like if we fit a linear model to something
which is not exactly linear.

Suppose f̃ ∈ F is closest to f∗. We hope that f̂ is close to f̃ when we have a lot of samples.
That is, we hope that

‖f̂ − f∗‖ . inf
f∈F
‖f − f∗‖+ εn,

where εn → 0 as n → ∞. We would also like εn to decay as fast as possible. This
kind of bound gives us a justification that our nonparametric regression gives us a best
approximation to the function f∗.

Define ∂F = F − F = {f − g : f, g ∈ F}. Assume that ∂F is star-shaped; we can
always take the star hull to make this true, so this is not a stringent assumption.

Theorem 1.2. Let δn = inf{δ > 0 : Gn(δ; ∂F) ≤ δ2

2σ}. Then there exist constants c0, c1, c2
such that the event

{f̂ − f∗‖2n ≤ inf
γ∈(0,1)

[
1 + gamma

1− γ
‖f − f∗‖2n +

c0
γ(1− γ)

δnt

]
∀f ∈ F

occurs with probability at least 1− c1e−c2
ntδn
σ2 .

This says that
‖f̂ − f∗‖2n . inf

f∈F
‖f − f∗‖2n + δ2n,

so we can integrate this probability bound to get an expectation bound:

E[‖f̂ − f∗‖2n] . inf
f∈F
‖f − f∗‖2n + δ2n +

σ2

n
.

Note that if f∗ ∈ F , then the first term is 0, so this recovers the prediction error bound in
the previous theorem.
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Proof. We start from a basic inequality:

1

2n

n∑
i=1

(yi − f̂(xi))
2 ≤ 1

2n

n∑
i=1

(y − i− f∗(xi))2.

This tells us that

1

2
‖f̂ − f∗‖2n ≤

1

2
‖f̃ − f∗‖2n +

∣∣∣∣∣ 1n
n∑
i=1

wi(f̂(xi)− f̃(xi))

∣∣∣∣∣︸ ︷︷ ︸
(∗)

.

We want to upper bound the right term; this is basically the same thing we did for the
previous prediction error bound, but with f̃ instead of f∗. Recall that by definition,
Fn(δ; ∂F) = E[sup g∈∂F

‖g‖n‖≤δ
| 1n
∑n

i=1wig(xi)|] and Gn(δ.∂F) � δ2n.

The simple case is when ‖f̂ − f̃‖n ≤ δ. In this case,

(∗) . Gn(δn; ∂F) � δ2n.

The harder case is when ‖f̂ − f̃‖n ≥ δn. In this case, our goal is to show that (∗) .
δn‖f̂ − f̃‖n.

(∗) =

∣∣∣∣∣ 1n
n∑
i=1

wi (f̂(xi)− f̃(xi))
δn

‖f̂ − f̃‖n︸ ︷︷ ︸
=:g(xi)

∣∣∣∣∣‖f̂ − f̃‖nδn

Since ∂F is star-shaped, we have g ∈ ∂F . Also observe that ‖g‖n ≤ δn.

. sup
g∈∂F
‖g‖n≤δ

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣ ‖f̂ − f̃‖nδn

If we have an argument to show that this quantity concentrates around its mean, we get

. Gn(δn; ∂F)
‖f̂ − f̃‖n

δn

= δn‖f̂ − f̃‖n.

Using this line of argument, we can show that

‖f̂ − f∗‖n ≤ ‖f̃ − f∗‖n + 2 max{δ2n, δn‖f̂ − f̃‖n}

The way to deal with the last term is to use the inequality

δn‖f̂ − f̃‖n ≤ δn(‖f̂ − f∗‖n + ‖f̃ − f∗‖n) ≤ 1

ε
δ2n + ε(‖f̂ − f∗‖n + ‖f̃ − f∗‖n)2

≤ 1

ε
δ2n + 2ε‖f̂ − f∗‖2n + 2ε‖f̃ − f∗‖2n.

Here, we are using the Fenchel-Young inequality, ab = (a/
√
ε)(b
√
ε) ≤ ( a√

ε
)2 + (

√
εb)2.
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1.4 Applications of the oracle inequality

Example 1.4. Suppose {φm}∞m=1 is an orthogonal basis of L2(P), and let Fortho(1, T ) :=
{f =

∑T
n=1 βmφm :

∑T
m=1 β

2
m ≤ 1. If f∗ =

∑∞
m=1 θ

∗
mφm, then f∗ /∈ Fortho. Using this

oracle inequality, we can get

‖f̂ − f∗‖2n .
∞∑

m>T

(θ∗m)2 + σ2
T

n
.

The intuition is that if we have n samples, we can choose T = εn so that the right term is
small. Then the error is roughly the contribution of the first term.

Example 1.5. Let yi = 〈xi, θ∗〉+εi, and let fθ∗ = 〈·, θ∗〉. Then consider the function class
Fsparse(s) = {fθ = 〈·, θ〉 : θ ∈ Rd.‖θ‖0 ≤ s}. Our estimator is then

θ̂ = arg min
‖θ‖0≤s

‖y −Xθ‖22.

This is the `0-variant of LASSO, which is not efficiently computable. Even if the model is
not s-sparse, we get

‖X(θ̃ − θ∗)‖22
n

≤ inf
‖θ‖0≤s

‖X(θ − θ∗)‖22
n

+
δ2n
n
.

Here, we know that

δ2n . σ2
s log(ed/s)

n
.

In section 13.4.1 of Wainwright’s book, there is a discussion of oracle inequalities for
regularized estimators.
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