Statistics 210B Lecture 24 Notes

Daniel Raban
April 19, 2022

1 Examples of and Oracle Inequality for Non-Parametric Least Squares Regression

1.1 Recap: localized Gaussian complexity bound for non-parametric least squares

We are studying non-parametric regression. Our model is that we observe $x_{i} \in \mathscr{X}$ and $y_{i} \in \mathbb{R}$, where

$$
y_{i}=f^{*}\left(z_{i}\right)+\sigma \cdot w_{i}, \quad i \in[n]
$$

and $f^{*} \in \mathcal{F} \subseteq\{f: \mathscr{X} \rightarrow \mathbb{R}\}$ is in a designated function class. The noise is $w_{i} \stackrel{\text { iid }}{\sim} N(0,1)$.
We consider the non-parametric least squares problem, which has the constrained form

$$
\widehat{f} \in \underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

Our goal is to bound the prediction error

$$
\left\|\widehat{f}-f^{*}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}=\frac{1}{n} \sum_{i=1}^{n}\left(\widehat{f}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right)^{2} .
$$

Last time, we proved the following localized Gaussian complexity bound.
Theorem 1.1. Suppose that $\mathcal{F} *=\mathcal{F}-\left\{f^{*}\right\}$ is star shaped. Then

$$
\mathbb{E}_{w_{i}}\left[\left\|\widehat{f}_{n}-f^{*}\right\|_{n}^{2}\right] \lesssim \delta_{n}^{2}
$$

where δ_{n}^{2} solves $\mathcal{G}_{n}\left(\delta ; \mathcal{F}^{*}\right)=\delta^{2} /(2 \sigma)$, which is

$$
\mathcal{G}_{n}\left(\delta ; \mathcal{F}^{*}\right):=\mathbb{E}\left[\sup _{\substack{g \in \mathcal{F}^{*} \\\|g\|_{n} \leq \delta}}\left|\frac{1}{n} \sum_{i=1}^{n} w_{i} g\left(x_{i}\right)\right|\right] .
$$

The chaining method gives us a bound

$$
\mathcal{G}_{n}\left(\delta ; \mathcal{F}^{*}\right) \lesssim \frac{\delta^{2}}{4 \sigma}+\frac{16}{\sqrt{n}} \int_{\frac{\delta^{2}}{4 \delta}}^{\delta} \sqrt{\log N_{n}\left(t ; B_{n}\left(\delta ; \mathcal{F}^{*}\right)\right)} d t
$$

Let's look at some concrete examples for this localized Gaussian complexity bound.

1.2 Applications of the localized Gaussian complexity bound

Example 1.1. Let $\mathcal{F}_{1: n}=\left\{f_{\theta}(\cdot)=\langle\cdot, \theta\rangle: \theta \in \mathbb{R}^{d}\right\}$, and let

$$
y_{i}=\left\langle x_{i}, \theta^{*}\right\rangle+\sigma \cdot w_{i}, \quad i \in[n],
$$

where $\theta^{*} \in \mathbb{R}^{d}$. Our estimator is

$$
\widehat{\theta}=\min _{\theta \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left\langle x_{i}, \theta\right\rangle\right)^{2},
$$

so

$$
f_{\widehat{\theta}}=\underset{f_{\theta} \in \mathcal{F}_{1: n}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)^{2} .
$$

We will show that

$$
\begin{aligned}
\left\|f_{\widehat{\theta}}-f_{\theta^{*}}\right\|_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left\langle x_{i}, \widehat{\theta}-\theta^{*}\right\rangle^{2} & \\
& =\frac{\left\|X\left(\theta^{*}-\widehat{\theta}\right)\right\|_{2}^{2}}{n} \\
& \lesssim \sigma^{2} \cdot \frac{\operatorname{rank}(X)}{n} \\
& \lesssim \sigma^{2} \frac{d}{n} .
\end{aligned}
$$

We have the upper bound proportional to $\frac{1}{\sqrt{n}} \int_{\frac{\delta^{2}}{4 \delta}}^{\delta} \sqrt{\log N_{n}\left(t ; B_{n}\left(\delta ; \mathcal{F}^{*}\right)\right)} d t$, so we just need to calculate this covering number. This ball is

$$
B_{n}\left(\delta ; \mathcal{F}_{1: n}\right)=\left\|f_{\theta}(x)=\langle x, \theta\rangle: \sqrt{\frac{1}{n} \sum_{i=1}^{n}\left\langle x_{i}, \theta\right\rangle^{2}} \leq \delta\right\|,
$$

which is isomorphic to the δ-ball in the range of X (where dim range $(X)=\operatorname{rank}(X)$. Using a volume argument, the covering number is

$$
N_{n}\left(t ; B_{n}\left(\delta ; \mathcal{F}_{1: n}\right)\right) \leq r \cdot \log \left(1+\frac{2 \delta}{t}\right), \quad r=\operatorname{rank}(X)
$$

So the metric entropy integral is upper bounded by

$$
\frac{\sqrt{r}}{\sqrt{n}} \int_{\frac{\delta^{2}}{4 \delta}}^{\delta} \sqrt{\log \left(1+\frac{2 \delta}{t}\right)} d t \leq c \cdot \delta \sqrt{r} n
$$

We have $c \delta \sqrt{\frac{r}{n}}=\frac{\delta^{2}}{4 \sigma}$, so solving gives $\delta_{n}=c \sigma \sqrt{\frac{r}{n}}$. So $\delta_{n}^{2}=c \sigma \sqrt{\frac{r}{n}}$, and we get

$$
\mathbb{E}_{w}\left[\left\|f_{\widehat{\theta}}-f_{\theta^{*}}\right\|_{n}^{2}\right] \lesssim \sigma \sqrt{\frac{r}{n}}
$$

Example 1.2 (Lipschitz function class). Let $\mathcal{F}_{\text {Lip }}(L)=\{f:[0,1] \rightarrow \mathbb{R}: f(0)=0, f$ is $L-$ Lipschitz\}. Then

$$
\mathcal{F}^{*} \subseteq \mathcal{F}_{\text {Lip }}(L)-\mathcal{F}_{\text {Lip }}(L)=\mathcal{F}_{\text {Lip }}(2 L) .
$$

We have upper bounded the metric entropy of this function class as

$$
\log N\left(\varepsilon ; \mathcal{F}(2 L),\|\cdot\|_{\infty}\right) \lesssim \frac{L}{\varepsilon},
$$

where $\|f\|_{\infty}=\sup _{x \in \mathscr{X}}$, so $\|f\|_{n}=\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)^{2}\right)^{1 / 2} \leq\|f\|_{\infty}$. This tells us that

$$
\log N\left(\varepsilon ; \mathcal{F}(2 L),\|\cdot\|_{n}\right) \leq \log N\left(\varepsilon ; \mathcal{F}(2 L),\|\cdot\|_{\infty}\right) \lesssim \frac{L}{\varepsilon}
$$

So the metric entropy integral is

$$
\begin{aligned}
\frac{1}{\sqrt{n}} \int_{\frac{\delta^{2}}{4 \delta}}^{\delta} \sqrt{\log N_{n}\left(t ; \mathcal{F}(2 L),\|\cdot\|_{\infty}\right)} d t & \leq \frac{1}{\sqrt{n}} \int_{\frac{\delta^{2}}{4 \sigma}}^{\delta} \sqrt{\frac{L}{t}} d t \\
& =\sqrt{\frac{L}{n}}\left(\left.2 \sqrt{t}\right|_{\frac{\delta^{2}}{4 \sigma}} ^{\delta}\right) \\
& =c \sqrt{\frac{L}{n}}\left(\sqrt{\delta}-\sqrt{\delta^{2} /(4 \sigma)}\right) \\
& \leq c \sqrt{\frac{L}{n}} \sqrt{\delta} .
\end{aligned}
$$

Solving $\sqrt{\frac{L \delta}{n}}=\delta^{2}$ gives $\delta^{2} \lesssim\left(\frac{L \sigma^{2}}{n}\right)^{2 / 3}$.
Example 1.3. What if $\log N \asymp \frac{1}{\varepsilon^{d}}$ for $d \geq 3$ (Lipschitz in d dimensions)? Then

$$
\begin{aligned}
\frac{1}{\sqrt{n}} \int_{\varepsilon}^{\delta} \frac{1}{t^{d} / 2} d t & =\left.\frac{1}{\sqrt{n}} \frac{2}{d-2} \frac{-1}{t^{d / 2-1}}\right|_{\varepsilon} ^{\delta} \\
& \leq \frac{1}{\sqrt{n}} \frac{2}{d-2} \frac{1}{\varepsilon^{d / 2-1}}
\end{aligned}
$$

Take $\varepsilon=\frac{\delta^{2}}{4 \sigma}$ and compare $\frac{1}{\sqrt{n}} \frac{2}{d-2} \frac{1}{\varepsilon^{d / 2-1}}=\varepsilon$ to get $\varepsilon \lesssim \frac{1}{n^{4 / d}}$. This gives $\delta^{2} \lesssim \frac{1}{n^{4 / d}}$.

1.3 Oracle inequalities

In practice, we may encounter the situation $f^{*} \notin \mathcal{F}$, like if we fit a linear model to something which is not exactly linear.

Suppose $\tilde{f} \in \mathcal{F}$ is closest to f^{*}. We hope that \widehat{f} is close to \tilde{f} when we have a lot of samples. That is, we hope that

$$
\left\|\widehat{f}-f^{*}\right\| \lesssim \inf _{f \in \mathcal{F}}\left\|f-f^{*}\right\|+\varepsilon_{n}
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. We would also like ε_{n} to decay as fast as possible. This kind of bound gives us a justification that our nonparametric regression gives us a best approximation to the function f^{*}.

Define $\partial \mathcal{F}=\mathcal{F}-\mathcal{F}=\{f-g: f, g \in \mathcal{F}\}$. Assume that $\partial \mathcal{F}$ is star-shaped; we can always take the star hull to make this true, so this is not a stringent assumption.

Theorem 1.2. Let $\delta_{n}=\inf \left\{\delta>0: \mathcal{G}_{n}(\delta ; \partial \mathcal{F}) \leq \frac{\delta^{2}}{2 \sigma}\right\}$. Then there exist constants c_{0}, c_{1}, c_{2} such that the event

$$
\left\{\widehat{f}-f^{*} \|_{n}^{2} \leq \inf _{\gamma \in(0,1)}\left[\frac{1+g a m m a}{1-\gamma}\left\|f-f^{*}\right\|_{n}^{2}+\frac{c_{0}}{\gamma(1-\gamma)} \delta_{n} t\right] \quad \forall f \in \mathcal{F}\right.
$$

occurs with probability at least $1-c_{1} e^{-c_{2} \frac{n t \delta_{n}}{\sigma^{2}}}$.
This says that

$$
\left\|\widehat{f}-f^{*}\right\|_{n}^{2} \lesssim \inf _{f \in \mathcal{F}}\left\|f-f^{*}\right\|_{n}^{2}+\delta_{n}^{2}
$$

so we can integrate this probability bound to get an expectation bound:

$$
\mathbb{E}\left[\left\|\widehat{f}-f^{*}\right\|_{n}^{2}\right] \lesssim \inf _{f \in \mathcal{F}}\left\|f-f^{*}\right\|_{n}^{2}+\delta_{n}^{2}+\frac{\sigma^{2}}{n}
$$

Note that if $f^{*} \in \mathcal{F}$, then the first term is 0 , so this recovers the prediction error bound in the previous theorem.

Proof. We start from a basic inequality:

$$
\frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\widehat{f}\left(x_{i}\right)\right)^{2} \leq \frac{1}{2 n} \sum_{i=1}^{n}\left(y-i-f^{*}\left(x_{i}\right)\right)^{2} .
$$

This tells us that

$$
\frac{1}{2}\left\|\widehat{f}-f^{*}\right\|_{n}^{2} \leq \frac{1}{2}\left\|\tilde{f}-f^{*}\right\|_{n}^{2}+\underbrace{\left|\frac{1}{n} \sum_{i=1}^{n} w_{i}\left(\widehat{f}\left(x_{i}\right)-\tilde{f}\left(x_{i}\right)\right)\right|}_{(*)} .
$$

We want to upper bound the right term; this is basically the same thing we did for the previous prediction error bound, but with \widetilde{f} instead of f^{*}. Recall that by definition, $\mathcal{F}_{n}(\delta ; \partial \mathcal{F})=\mathbb{E}\left[\sup _{\|g\|_{n} \| \in \delta \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} w_{i} g\left(x_{i}\right)\right|\right]$ and $\mathcal{G}_{n}(\delta . \partial \mathcal{F}) \asymp \delta_{n}^{2}$.

The simple case is when $\|\widehat{f}-\widetilde{f}\|_{n} \leq \delta$. In this case,

$$
(*) \lesssim \mathcal{G}_{n}\left(\delta_{n} ; \partial \mathcal{F}\right) \asymp \delta_{n}^{2}
$$

The harder case is when $\|\widehat{f}-\widetilde{f}\|_{n} \geq \delta_{n}$. In this case, our goal is to show that $(*) \lesssim$ $\delta_{n}\|\widehat{f}-\widetilde{f}\|_{n}$.

$$
(*)=|\frac{1}{n} \sum_{i=1}^{n} w_{i} \underbrace{\left(\widehat{f}\left(x_{i}\right)-\widetilde{f}\left(x_{i}\right)\right) \frac{\delta_{n}}{\|\widehat{f}-\widetilde{f}\|_{n}}}_{=: g\left(x_{i}\right)}| \frac{\|\widehat{f}-\widetilde{f}\|_{n}}{\delta_{n}}
$$

Since $\partial \mathcal{F}$ is star-shaped, we have $g \in \partial \mathcal{F}$. Also observe that $\|g\|_{n} \leq \delta_{n}$.

$$
\lesssim \sup _{\substack{g \in \partial F \\\|g\|_{n} \leq \delta}}\left|\frac{1}{n} \sum_{i=1}^{n} w_{i} g\left(x_{i}\right)\right| \frac{\|\widehat{f}-\widetilde{f}\|_{n}}{\delta_{n}}
$$

If we have an argument to show that this quantity concentrates around its mean, we get

$$
\begin{aligned}
& \lesssim \mathcal{G}_{n}\left(\delta_{n} ; \partial \mathcal{F}\right) \frac{\|\widehat{f}-\widetilde{f}\|_{n}}{\delta_{n}} \\
& =\delta_{n}\|\widehat{f}-\widetilde{f}\|_{n} .
\end{aligned}
$$

Using this line of argument, we can show that

$$
\left\|\widehat{f}-f^{*}\right\|_{n} \leq\left\|\widetilde{f}-f^{*}\right\|_{n}+2 \max \left\{\delta_{n}^{2}, \delta_{n}\|\widehat{f}-\widetilde{f}\|_{n}\right\}
$$

The way to deal with the last term is to use the inequality

$$
\begin{aligned}
\delta_{n}\|\widehat{f}-\widetilde{f}\|_{n} \leq \delta_{n}\left(\left\|\widehat{f}-f^{*}\right\|_{n}+\left\|\widetilde{f}-f^{*}\right\|_{n}\right) & \leq \frac{1}{\varepsilon} \delta_{n}^{2}+\varepsilon\left(\left\|\widehat{f}-f^{*}\right\|_{n}+\left\|\widetilde{f}-f^{*}\right\|_{n}\right)^{2} \\
& \leq \frac{1}{\varepsilon} \delta_{n}^{2}+2 \varepsilon\left\|\widehat{f}-f^{*}\right\|_{n}^{2}+2 \varepsilon\left\|\widetilde{f}-f^{*}\right\|_{n}^{2}
\end{aligned}
$$

Here, we are using the Fenchel-Young inequality, $a b=(a / \sqrt{\varepsilon})(b \sqrt{\varepsilon}) \leq\left(\frac{a}{\sqrt{\varepsilon}}\right)^{2}+(\sqrt{\varepsilon} b)^{2}$.

1.4 Applications of the oracle inequality

Example 1.4. Suppose $\left\{\phi_{m}\right\}_{m=1}^{\infty}$ is an orthogonal basis of $L^{2}(\mathbb{P})$, and let $\mathcal{F}_{\text {ortho }}(1, T):=$ $\left\{f=\sum_{n=1}^{T} \beta_{m} \phi_{m}: \sum_{m=1}^{T} \beta_{m}^{2} \leq 1\right.$. If $f^{*}=\sum_{m=1}^{\infty} \theta_{m}^{*} \phi_{m}$, then $f^{*} \notin \mathcal{F}_{\text {ortho }}$. Using this oracle inequality, we can get

$$
\left\|\widehat{f}-f^{*}\right\|_{n}^{2} \lesssim \sum_{m>T}^{\infty}\left(\theta_{m}^{*}\right)^{2}+\sigma^{2} \frac{T}{n}
$$

The intuition is that if we have n samples, we can choose $T=\varepsilon n$ so that the right term is small. Then the error is roughly the contribution of the first term.

Example 1.5. Let $y_{i}=\left\langle x_{i}, \theta_{*}\right\rangle+\varepsilon_{i}$, and let $f_{\theta^{*}}=\left\langle\cdot, \theta_{*}\right\rangle$. Then consider the function class $\mathcal{F}_{\text {sparse }}(s)=\left\{f_{\theta}=\langle\cdot, \theta\rangle: \theta \in \mathbb{R}^{d} \cdot\|\theta\|_{0} \leq s\right\}$. Our estimator is then

$$
\widehat{\theta}=\underset{\|\theta\|_{0} \leq s}{\arg \min }\|y-X \theta\|_{2}^{2} .
$$

This is the ℓ_{0}-variant of LASSO, which is not efficiently computable. Even if the model is not s-sparse, we get

$$
\frac{\left\|X\left(\widetilde{\theta}-\theta^{*}\right)\right\|_{2}^{2}}{n} \leq \inf _{\|\theta\|_{0} \leq s} \frac{\left\|X\left(\theta-\theta^{*}\right)\right\|_{2}^{2}}{n}+\frac{\delta_{n}^{2}}{n} .
$$

Here, we know that

$$
\delta_{n}^{2} \lesssim \sigma^{2} \frac{s \log (e d / s)}{n}
$$

In section 13.4.1 of Wainwright's book, there is a discussion of oracle inequalities for regularized estimators.

